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By Paul M. Chung and Aemer D. Anderson

SUMMARY

The heat transfer due to catalytic recombination of a rartially
dissociated diatomic gas along the surfaces of two-dimensional and
axisymmetric bodies with finite catalytic efficiencies is studied ana-
lytically. An integral method is employed resulting in simple yet
relatively complete solutions for the particular configurations
considered.

A closed form solution is derived which enables one to calculate
atom mass-fraction distribution, therefore catalytic heat transfer dis-
tribution, along the surface of a flat plate in frozen compressible flow
with and without transpiration.

Numerical calculations are made to determine the atom mass-fraction
distribution along an axisymmetric conical body with spherical nose in
frozen hypersonic compressible flow. A simple solution based on a local
similarity concept is found to be in good agreement with these numerical
calculations. The conditions are given for which the local similarity
solution is expected to be satisfactory.

The limitations on the practical application of the analysis to the
flight of the blunt bodies in the atmosphere are discussed. The use of
boundary-layer theory and the assumption of frozen flow restrict appli-
cation of the analysis to altitudes between about 150,000 and 250,000
Teet.

INTRODUCTICN

Surface reaction, long a subject of interest in the chemical
industry, has become important in aerodynamics in connection with high
altitude hypersonic flight. When the flight conditions are such that



the flow of dissociated air past the body is almost chemically frozen, .
heat transfer to the body is strongly influenced by the amount of cata-

lytic recombination at the wall. With noncatelytic walls, the chemical

energy of the flow does not contribute to the heat transfer at all and,
conversely, with highly catalytic walls the heat transfer is approxi-

mately the same as that which occurs across ar. equilibrium boundary

layer. Thus, when the air is completely disscciated the heat transier

may vary with the catalytic activity of the wi.ll from about 25 percent

to about 100 percent of equilibrium heat transfer.

Boundary—laye; theory was first applied o surface chemical reaction
problems by Chambre and Acrivos (ref. 1). Siice then many people, such
as Chambré, Acrivos, Rosner, Goulard, Andersoa, and Chung (refs. 2
through 8) have studied the problem for variois applications using dif-
ferent approaches. The specific solutions obtained are for

1. The incompressible flow over a flat plate upon which an arbi-
trary order chemical reactionl occurs (refs. 1 through 5).

o, The compressible flow over a flat plate upon which first—order
chemical reaction takes place (ref. 8). .

3. The first-order chemical reaction at, the stagnation point in a
dissociated hypersonic flow without mass transfer (ref. 6), and
with mass transfer (ref. 7).

In this paper, an integral method will e used to obtaln catalytic
heat-transfer predictions for (1) a flat plase in frozen compressible
flow with and without transpiration and (2) in axisymmetric conical body
with a spherical nose in frozen hypersonic compressible flow without
transpiration.

The effect of mass transfer is includec in the present analysis
pecause it may be used for cooling purposes in & hypersonic flight and
also because there is mass transfer at the surface when the surface
participates in +he chemical reaction.

SYMBOLS
B,,Bz constants for equation (51) given in table, page 16
.2
c Pw,oHtw,0 °
Pe,ote,0 -

1The reaction rate at the wall is an erbitrary function of the
surface concentration of the reactant.
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Cp

=

Pr

parameter defined by equation (9)

mass fraction

frozen specific heat at constant pressure
coefficient of binary diffusion ,

Blasius stream function used in equation (63)
momentum integral defined by equation (39)
concentration integral defined by equation (41)

reaction parameter defined by equation (L9)

G

JBo

frozen total enthalpy defined by equation (6)
heat of recombination
mass flux of atoms to the wall

parameter defined by equation (53)

Y
JBo

parameter defined by equation (5.4)

parameter defined by equation (55)

frozen thermal conductivity of gas

specific rate constant for surface recombination
reference length (see fig. 1)

molecular weight

free-stream Mach number

Ci,e
pressure

Prandtl number
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™

+otal heat-transfer rate toward the wall per unit area
convective heat-transfer rate toward the wall per unit area

heat transfer rate per unit area by aton recombination at the
surface

universal gas constant

distance from the axis of symmetry to & point on the surface
(see fig. 1)

PUgoLs

Reynolds number, =7

streamwise independent variable defined by equation (7)

Schmidt number, é%

absolute temperature

independent varisble defined by equaticn (8)

x component of velocity
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38

y component of velocity

X

—

L

streamwise distance along the surface
distance normal to surface

mass rate of collision of atoms with taie wall
varisble defined by equation (65)

due
dx

transpiration parameter defined by equation (38)
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4 surface catalytic efficiency
§) boundary-layer thickness

B+ modified boundary-layer thickness defined by equation (36)

O for two-dimensional bodies

€ {; for axisymmetric bodies

n g—t defined by equation (36)

0 nose angle

A parameter defined by equation (37)

) dynamic viscosity

v kinematic viscosity

13 durmy variable

P density

° mzw; B Si’x o

2 )N

o) shape factor defined by equation (50)

JAN shock layer thickness

T B

X equilibrium mole fractions

¥ stream function defined by equations (14) and (15)

Q parameter defined by equation (81)
Subscripts

E equilibrium

e edge of boundary layer

i ith species



m mixture
W wall

o) leading edge of flat plate or stagnation point of sphere

1 atoms
2 molecules
0 free stream

Superscript
' differentiation with respect to s except for equation (G63)
STMPLIFICATION OF BOUNDARY-LAYER EQUATIONS

The classical laminar boundary-layer theory is used in the present
paper. The fluid is considered to be a partially dissociated diatomic
gas of constant Schmidt number and it is assimed to be frozen in this
state throughout the entire flow field. The actual range of flight con-
ditions in the atmosphere for which these sirnplifications are valid will
be discussed later.

The equation of state for a partially d.ssociated diatomic gas is:

R
P = M—— <l+Cl)pT (l)
2
where the term (l+4cy) is known as the compressibility factor. For two-
dimensicnal and axisymmetric bodies the boun lary-layer conservation
equations are:

Mass
) € 3 €
‘:(?ur ) + J(E}VI‘ ) =0 (2)
X ay

Momentum

9% 1Y,
S
i oV
s
N
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Frozen total energy

Sh h_o (B omY), o 1Yo (e
ou Ox + eV Qy - Iy <PI’ jy) + ;f;y [p(l PI’/ ,fvy 2

Species
dcq C‘Ci ) uoJeq
u —= + = =T |l =
. ox o Jdy Oy <SC Oy> (5)
where
T u
= . . ]
b =) <cl/; cp’ldT> v % (6)
i

Considerable simplification of the conservation equations results when
a new set of independent variables is defined as

X—l
s =\/P Cuer2€ax (7)
o

y
t:ueref 0 g (8)
(@]

fo,e

where

- ; Dek ek
T = P - < Pt > ( eHe > - C <' eHe \ (9)
Pe,oMe, o Peke/ \Pe,oMe,o Pe,ote,o/

Following references 9 and 10 we agssume

S 0.2
¢ = < w,0 WZO> (lO)
Pe,oMe,o

and
Pebe Pe

-5 e - £ 11

Pe,oMe,0 Do (11)
Now C is =& function of x alone. It was shown in references 9 and 10
that these assumptions (egs. (10) and (11)) affect the solution for heat
transfer to an infinitely catalytic wall or a totally noncatalytic wall
by less than 10 percent. It might be expected that discrepancies for
intermediate values of catalytic activity will be as small.



Transformation of the conservation equations to the set of
independent variables s and t is accomplish=d by means of the following
relations:

5() - Tyerze 20 ot o) (12)

ox RE T Tt
o ) p o)
ay = U.eI'e pe,o —Bt_ (13)

A stream function is defined to satisfy the nass conservation equation
(2) as

pur€ = 0o e T (1)

(0%

ovE€ =05 & T (15)

Transformed to the s-t plane, eguations (1+) and (15) become

u oV
u -2 16
Ue Ot (16)
Po.e (= d¥ | ot M)
v o= = =228 ((Cuera® 2 + = = 1
P r€ © os ix Ot (a7)
New dependent variables are defined as
)4
U==— 18
= (18)
ve- (19)
ds

Now with the use of equations (7) through (19), the comservation equa-
tions (2) through (5) can be transformed to somewhat resemble the
familiar incompressible boundary-layer equations as follows:

Mass

AU, Moo (20)
ds ot

o e
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U

9
Momentum
oU 3 0°U . 1 e [pe
Us= +V = = == == - 21
3 © 3t Tose Ot2 T e T\ v (21)
Frozen total energy
Sh oh _ Yo,e 3% 2 1> 52 (UZ
U= 4+ V== 22 =24, U - = — | = 22
Us ot Pr ot2 €€ Pr/ 5t2 \2 (22)
Species
e A v d%c,
U—2 v —+=-_2¢" 1 (23)
Js ot Se 32
The last term in equation (21) is zero for a flat plate without
pressure gradient. Also, according to reference 9, it may be neglected
in a highly cooled hypersonic boundary layer over a blunt body. Equa-
tion (21) therefore becomes for a flat plate or & highly cooled hyper-
sonic blunt body
~ N =)
vV v o, U 2h)
s TV S T Vo B (
Equation (23) may be written, for the diatomic gaes under consideration
dey dcy  Vo,e 93¢,
U'\—'-('-V-——:-—-J-— 2
Js ot Sc o2 (25)
Co=1-cy (26)

Note that as a consequence of the assumption of equation (10) the
momentum and species conservation equations are no longer coupled to the
energy equation; therefore, equation (22) need not be treated here since
its solution may be found elsewhere. Equations (20), (24), and (25) are
in the form of the familiar incompressible flat plate boundary-layer
equations and are now amenasble to solutions. Now it is seen that the
pertinent original boundary-layer equations (2), (3), and (5) are simpli-
fied to equations (20), (24), and (25). The boundary conditions on these
equations are as follows:
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at t = 0O: }
Pw
U=0, V = il Vi
po,eCuer
dey _ Po,e Sc Vwcgly Sc S Jiw $ (27)
Ot Ho,e bo,eCuer® 7
at t = oot
u=1, cy = Ci,e )
at s = 0

Vs (%%) - Bounded , Vs <g%> - Bounded (28)

The boundary conditions are not yet complete since Ji,w 1is not
known. The term Ji,w 1is the mass flux of atoms to the wa 1 and is
obtained from a consideration of the chemical <inetics of the surface
reaction. Therefore, we shall include in the subsequent section a brief
discussion of the surface chemical reaction kiietics pefore going into
the actual solution of the eguations.

CHEMICAL KINETICS OF THE CATALYTIC SURFACE REACTION

More comprehensive treatments of the sub ect gbout to be discussed
may be found in references 11 and 12.

It is generally accepted that the catalylic recombination of disso-
ciated air on surfaces at temperatures lower 1han 2000° K and at pressures
above 107% atm is a first-order process proceeding only toward the neg-
ligibly small equilibrium atom concentration. This discussion is limited
to such a reaction.

The microscopic reaction rate, which is 1 function of the rate of
collision with the wall, may be obtained as fillows for a dissociated
diatomic gas: Let 7% be the probability of an atom recombining upon
striking the wall. The equilibrium mole fraction of the molecules, Xz,
is unity at the surface temperatures and pressures of interest here.
The factor 7y is commonly referred to as the "catalytic efficiency.”
The mass rate of recombination may then be written

Ji,w = 7% (29)

Ul
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where Z 1s the mass rate of collision of atoms with the wall and is,
for & Maxwellian distribution,

[ RTw [ 2M; [ c1,w
7 = _— —— 0
DWC l,W 27{Ml p 'JTRTW <l+Cl’W (3 )
2My / C1w
- —_ 1
Ji,w = 7P J TRy <i+cl,w> (31)

In engineering work, including the present analysis, the reaction
rate is often written

then

PMy / cy,w
Ji,w = Kypyer,w = 2ky ET;,(&:;?—% (32)
2

The specific catalytic rate constant, ky, is related to the catalytic
efficiency by the expression

_ 21’[M1
7= ‘ET; ky (33)

The magnitude and temperature dependency of ki are not well
known for most surfaces; however, metallic and metallic oxide surfaces
have much higher efficiencies than nonmetallic surfaces. For instance,
at room temperature, ky for a metallic oxide is about 10 ft/sec, whereas
ky for pyrex is about 0.1 ft/sec (see ref. 6). There are also possi-
bilities of "poisoning" surfaces to reduce their catalytic efficiency.
Reference 13 reported a substantial reduction of the catalytic efficiency
of metallic surfaces upon application of iodine coatings.

REDUCTION OF GENERAL EQUATIONS TO AN ORDINARY DIFFERENTTAL EQUATION

In this section, the partial differential equations (20), (24), ana
(25) with the boundary conditions of (27) will be reduced to an ordinary
differential equation by the use of an integral method described in ref-
erence 1k,

The diffusion boundary layer is assumed to have the thickness of the
momentum boundary layer, an assumption which is believed to be valid for
Sc in the order of 1 according to reference 1L. Equations (24) ana
(25) are integrated across the boundary layer with the aid of equation
(20). The resulting integro-differential equations are
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where y

Ve, o

1

Fo =fo U(1-m)an

and the prime denotes differentiation with respect to
conditions become, with the aid of equation (32),

at n = O:
U=20
V=Vw
k., Sc ®
M - prsem+ oy

o he ,oCueTE

(3%)

(35)

(36)

(39)
(40)

(41)

The boundary

(o)
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In order to solve equations (34) and (35),
mist first be assumed. Fourth and fifth de
chosen to represent the brofiles for U and

Thus:

The coefficients an and bp are obtained b
number of boundary conditions at M1 = 0 and
satisfy five boundary conditions. One coef
left to be determined as the solution of eq
five boundary conditions are needed. These
those from equations (L2) ang (43), and tho
equations (24) and (25) at n =0 and 1.0.
profiles, equations (LL) and (45), 1is Justi
close agreement of the bresent solutions wi
as will be shown later.

Consider the momentum equation (34).
affine solution of the momentum equation ex

13

the form of U and m profiles
gree polynomials in 17 are
m, respectively.

(55)

Yy satisfying a sufficient
n = 1. Equation (44) must
ficlent in equation (15) is
uation (35); therefore, only
boundary conditions are
se obtained by satisfying
The particular choice of
fied a posteriori by the
th available exact solutions

It is well known that an
ists which satisfies the pre-

sent boundary conditions when T is constant (similarity transpiration).

This fact enables us to set Fi' =0, and t

N (WU/om),, + T _
T T T

Therefore:

0 rewrite equation (3L) as

nstant (46)
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The catalytic boundary condition described in (L42) may be written,
with the aid of equations (1), (1), (9), and ‘47), as

5?) My
= P Scmy+ GSc?d 57 L&
<:; W W l+fﬂw‘cl,e ( J)

where the reaction parameter, G,

(l+C1)e)Te

is

Tw

and the shape factor, @, is

0 <%>ff€ [Reo e (19)

N

L6 G ==

@—/u""s =
- CLue2r=2€ -

: (50)
~r£.<§§ r®

Upon substitution of the polynomial prcfiles with appropriate
boundary conditions, the concentration integral, (41), becomes

Fo = Bi(1-my) - Bz <%§> (51)
¢ W

where the constants Ba and Bz

depend on Equation (35), with the

solution of equation (3L) incorporated, may now be written as

—_ —_ 2 ; 1 My
’ Kag - Komy Kl[<l + m)i + 20 S] Timgct,e
my' = = (52)
2 [KZ + Kld) 1 ZJ s
(Ltmye:.,e)
where
Kl = ?—-2 G Sc (53)
Bi
Bz
Ko = 1 + =% T Sz (5&)
Bi
Ko =1~ 52— I (55)

T N'B,

D
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It is now seen that the pertinent conservation equations are
reduced to the single equation (52).

SOLUTION FOR THE SURFACE DISTRIBUTION OF ATOM CONCENTRATION

Condition for Application of the Local
Similarity Concept

Berore actually solving the equation (52), let us examine the pos-
sibility of obtaining the surface distribution of atom concentrations by
use of the local similarity concept.,

In flow past a wall with a finite catalytic activity, a concentra-
tion boundary layer develops through which atoms diffuse to recombine on
the surface. The resulting steady state atom concentration along the
wall is determined by the relative local rates of atom diffusion to the
surface and catalytic recombination at the surface. The diffusion rate
of the atoms, for a given concentration potential, is determined by the
aerodynamics of the flow, characterized here by the momentum and diffu-
sion boundary-layer equations (2L) and (25). The consumption rate of
atoms at the wall, on the other hand, is controlled by the heterogenecus
chemical reaction kinetics discussed earlier. In general, affine solu-
tions of equation (25) can not be obtained to satisfy the catalytic
boundary condition of equation (27). This can be seen, for instance,
from the fact that the catalytic boundary condition (48) for the inte—
grated form of the diffusion equation, (35), depends upon the variable
X explicitly through . According to the present method of solution
characterized by the equation (35) and its boundary conditions, one would
have a similarity solution which would specify that my be independent
of X for any body whose geometry and flow characteristics are such that
® is independent of X. On the other hand, when ¢ wvaries slowly with
X, one expects a local similarity solution, explained below, to be valid,

Here, a local similarity solution means that equation (35) is solved
locally with the boundary condition (L8) applied as though it were not a
function of X, however, with ¢ being calculated at the point in qgues-
tion. An affine sclution can in this way be obtained locally for each
position along the body.

In practice, one could make use of already existing affine solutions
for a thermal boundary layer over an isothermal flat plate (ref. 15 for
instance). This problem is analogous to the Present one when the atoeom
concentration at the wall is independent of X. The affine solution
yields a relationship between (dm,/ )y and my for a locality which is
then solved simultaneously with equation (48) for my(X).
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The hypersonic pressure distribution and equilibrium heat—~transfer
distribution are already known for many inter:sting body shapes. With
this information, the validity of the local similarity solution can be
gqualitatively checked without performing any ~alculations. The simple
relaotionship given in reference 15, for instance, describes quite accu-
rutely the equilibrium heat transfer to two-dimensional and axisymmetric
podies., The function ¢ appears, essentially, in the equilibrium heat-
transfer equation of reference 15 from which we obtain

LB Pel (56)
vl
9w,0,E Do

Equation (56) shows that if the available pressure and equilibrium heat-
transfer curves for a particular two-dimensional or axisymmetric body
are found to be similar, then the function © for the body is & weak
function of X. For such a body the distribntion of atom concentration
along the wall, therefore the catalytic heat transfer, may be obtained
simply by using the local similarity concept.

The differential equation (52) will be solved in the following
sections for two typical body geometries; flat plate and axisymmetric
cone with spherical nose. A solution will be obtained in closed form
for the flat plate, The solution for the axisymmetric body will show
that the local similarity concept provides & useful approximation.

The universal constants involved in equation (52) are calculated for
the three transpiration rates, I' = 0, 1.0, end 2.0, and are given below.

r At By Bo(for Sc = 0.72)
0 34,05 | 0.2429 0.06270
1.0 | 4.6k .2323 .06L5T
2.0 | 58.51 ookl .06679

Flat Plate With Similarity Transpiration

The body studied in this section is sktown in figure 1(a). For two-
dimensional flow without pressure gradient, the streamwise variable
becomes

s = CLueX (57)

U e
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also
2 =X (58)

Equation (52) becomes

Ks - Kom, = (2 2 Kx3 M

-— -— +-.-——_

dmy 3 =W A'Bs Sc 1 l+mwcl’e (59)
ax 1

2
2 [Kg + ———Eﬁz————gj X
(l+mw01,e)

Equation (59) is nonlinear and the general solution cannot be
obtained analytically. There are, however, a few limiting cases for
which the equation can be integrated readily, and these cases will be
investigated first. They are:

1. VWhen the surface is infinitely catalytic.

2. When the surface is totally noncatalytic.

3. When the compressibility factor at the wall, (l+mw01,e): is
sufficiently near 1.

For the first case it is obvious that my = 0 for all X. When the wall
is noncatalytic, the similarity solution of equation (59) is

m, = 52 (60)

When the compressibility factor at the wall, (l+mwcl’e), is sufficiently
near 1, equation (59) simplifies to a first-order linear equation

1
2 5
am, Ko + <2 t ST SC> KX ke

+ 'mW =
ax 1
2(Kot+K X 2)X

I (01)
2(K2+K1X é) X

The closed solution +o this €équation which satisfies the boundary con-
ditions that My 1s finite at X = 0 is

2
IN-( 1+
1 - (]_ +&'X§> < A'Bz SC>
Ko

1
2 KJ_ 3
(l * ?\,Bg SC> K2 X

(62)

K
mw='—§
2
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A limiting process, letting X - 0, shows that my,0 = Ka/Kz, an expected
result since at X = 0 there is no time for reaction. Therefore the
inert wall solution, equation (60), must be velid.

More exact solutions of the limiting cases corresponding to solu—
tions (60) and (62) are found clsewhere and we shall compare these solu-
tions here. The exact solution for noncataly:ic wall with similarity
transpiration can be derived from eguaticn (1)) of reference T as

(63)

1
e = o0 S
 rose F__(_é_).}
1 FWS L [F"(O) dg

The transpiration rates are related by:

_ oy fewdex 2L
=2 [ - (6L)

For F, = -0.5 (separation occurs at Fy = - ..2385) and Sc = 0.72, the
approximate result according to equation (60 is within 5 percent of the
exact solution. The value of the integral in equation (63) was obtained
from reference 16.

Now for the case where the compressibility factor at the wall 1s
sufficiently near 1, I = 0, and (l+cl’e)Te/.fE Ty = 1, equation (62)
gives the solution to the problem treated in references 1, %, and 5,
where compressibility and transpiration were not taken into account. In
terms of the parameter 2 used in reference 1,

kL e
z = kyl: 5C Pe p" 250 d g2 (65)
0.33%e
the present solution for Sc = 0.72 1is
1 - (140.4582) 7%
mn, = (1+0.458z) (66)

1.003z

This solution, equation (66), is compared with other known solutions in
figure 2. For Se = 0.72, a good agreement is shown petween the present
solution and those of references 1 and 5. Equation (66) was presented
in reference 8 by the present authors. Slight differences 1in the con-
stants are due to the use of a different oxder polynomial approximation
in the velocity profile.

U e
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The complete solution of eguation (59) is obtained numerically by
the use of an IBM 70L digital computer. The numerical solutions were
obtained for Sc = 0.72 and several combinations of K; and Ci,e at
transpiration rates of I = 0, 1.0, and 2.0. A study of these numerical
results revealed that for each value of I', the sclutions were congruent
with equation (62) when ¢ = mw/mw)O was plotted versus
K1X1/2/K2(l+cl,e)a. Therefore, the function X X1/2/K, in equation (62)
was replaced by K1X1/2/K2(l+cl)e)G and the following semiempirical
closed form solution was obtained for all compressibility factors.

1 (1,2
K1X2 ] \ A’B2 Sc

1 - [l + S
oo M _ K2(1+Cl,e) (67)

My o 1
1+ 2 > KaX 2
%‘Bg Sc K2(1+Cl,e)0

Figure 3 shows the close correlation between equation (67) and the
results of the numerical solutions of equation (59) for the three trans-
piration rates.

It is seen in equation (67) that the general solution depends on
the two parameters, Kle/Z/Kg(l+Cl’e)O and 2/N'Bp Sc only.

Once the atom wall concentration is known, the catalytic heat trans-
fer, that is, the heat transfer due to diffusion, dg.ws 1S obtained as
follows: ’

B o _ [ kwpMo of_ MwC1,e
Ga,w = PwiyC1,wAhT = <‘RTW > AL Limycy e (69)

the total heat transfer is given by
(69)

9 = dq,w * e ,w

where 4. i 1s the heat transfer due to ordinary convection, values of
which can’be obtained elsewhere, such as in references 7 and 9.

Axisymmetric Conical Bedy With Spherical Nose

In this section, equation (52) will be first solved numerically
for the axisymmetric conical body with spherical nose shown in fig-
ure 1(b). An approximate solution will also be obtained by the use of
the local similarity concept and the two solutions will be compared.
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For simplicity, the following approximations used in reference 15
are used here for the inviscid flow properties.

p ‘ <
5 = cos2X , Ue = u PBoX for X =06 (70)'
p >
5 = cos®9 , Ue = u Bob for X £96 (71)

The streamwise variable s Dbecomes for the bcdy

X
s = CUmBOLsf X sin®X cos?X dX for X =6 (72)
@]

6
s = CuwBOLs*ijp X sin®X cos®X &X
o

X
+ 8 00326\/p [sin 6 + (X-0)cos H]Zd%} ror x 2° (73)
2]

also the function & becomes

X
f X sin®X cos®X dX
o = S for X =6 (74)
BOXZSiHZX

] X
JF X sin®X cos®X dX + 6 cosge\jp [sin 6 + (X-0)cos 6]°ax
o) o]

Boo%[sin 6 + (X-8)cos 9]2
for X 20 (75)

Now to remove a flight condition from the shipe factor let

o =+Po © (76)

and also define

Sc G (77)

|
—= v

G
S¢ —
Bl ’BO

U
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Now with the aid of equations (70) through (77), equation (52) becomes

- 1 =2 g8in X + X cos X My
- - 1 -
dmyy, L-mw - 2Ky < * A'Bo Sc ¢ sin X cos2X l+mye; e
7 =2
2 [1 + K10 ] ¢ X
(l+mwcl,e)2 C082X

for X = 6 (78)

1 -my - K3 <1 + —t ?% } Ty
T * A'Bz Sc cos 6[sin 9 + (%X-0)cos 6] limycy e

.5 =2
2[1+ K0 ]@9
(l+mw01,e)2 cos26

dm,,
ax

for X 26 (79)

The solution of equation (78) for X = O (stagnation point) can be
obtained from the general local similarity solution of equation (35).
This sclution is for I = 0

Iy = -2+ 1 - c1e) +-JQQ +1- cl,e)2 + hey e (80)
2Cl)e
where
Q=El<l+—2--_>5 (81)
A'Bs Sc

The value of @ at the stagnation point is found by noting

lim ¢ = 1/2
X0

Equation (80) was found to yield stagnation point values which check
within 5 percent of the exact solution given in reference 6.

For the region downstream of the stagnation point equations (78)
and (79) were integrated numerically for Sc = 0.72 and several values
of T and Ci,e, @nd with 6 equal to 50° and 70°. These results are
shown in figure 4. The solutions for G = O and G = oo represent the
two extremes of catalytic activity.
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Now let us examine the possibility of using the local similarity
solution everywhere along the body. In order o estimate the accuracy
of the local similarity solution, the hyperson.c pressure and equilibrium
heat-transfer distributions (obtained from ref. 15) are shown below for
tRe body in question.

1.0

\J Y

Sketch (a)

Since the curves are gquite alike except along the conical afterbody for
o = 50°, equation (80) is expected to be generally quite satisfactory
in the determination of the atom wall concentration.

From figure 4 we see that the variation of my with X becomes
less pronounced as G approaches either of ihe two extremes. The error
introduced by a local similarity assumption ¢hould therefore be largest
at intermediate values of G, and if its use can be justified there, it
should be valid for all velues of G.

Figure 5 shows the catalytic heat trans:er based on the numerical
solution and the local similarity solution for an intermediate value of -
the reaction parameter T = 5.0 and C1,e = 1.0. The agreement between
the two results is strikingly good, with som: deviation along the conical
afterbody for 6 = 50° as expected. It seeuns that the local similarity
solution is quite adequate for the calculation of catalytic heat transfer

to this body.
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APPLICATION TO HYPERSONIC FLIGHT

Altitude Range of Application

As flight altitude is increased, the boundary layer surrounding a
hypersonic vehicle passes through a regime in which homogeneous recom-
bination is significant into one where this reaction is frozen and,
finally, with very low density, into a regime where the classical
boundary-layer theory is no longer valid. The present analysis is
applicable in the intermediate regime, that of near frozen boundary-
layer flow, where catalytic recombination is probably most significant
in the calculation of heat transfer.

Heat transfer to blunt bodies with nonequilibrium boundary layers
was considered in reference 17, where it is shown that the boundary
layer at the stagnation point becomes practically frozen at about
200,000 feet altitude, depending, of course, on the nose radius and wall
temperature. Also, for a particular nose radius and wall temperature,
the boundary layer on the conical afterbody will be frozen at consider-
ably lower altitudes.

As the Reynolds number decreases with increasing altitude, the vor-
ticity in the inviscid flow generated by the bow shock becomes compar-
able to the vorticity in the boundary layer. This is called the vorti-
city interaction regime, in which it is necessary to modify the classical
boundary-layer theory.

Reference 18 indicates that the boundary-layer concept 1s valid near
the stagnation point of a blunt body whenever M _/Re, << pm/po’e(S/A).
Consider a hypersoniec body of 1 foot radius flying at an altitude of
250,000 feet. The ratio, Mw/Rew, is about one crder of magnitude smaller
than Qm/po,e; which suggests that boundary-layer theory can still be
approximately applied at this altitude. The effect of vorticity inter-
action on ordinary convective heat transfer to the stagnation point was
analyzed in reference 18 for a compressible inert gas. It can be cal-
culated from this analysis that the vorticity interaction effect on heat
transfer to the stagnation point of a sphere at the altitude of 250,000
feet is to increase the heat transfer about 10 percent. Since the vor-
ticity in the boundary layer increases rapidly as the gas flows around
the body, the altitude at which the vorticity interaction effect becomes
important on the conical afterbody should be considerably higher. The
present analysis should therefore be applicable between abocut 200,000
feet and 250,000 feet, a range which may be extended considerably in both
directions if one is primarily interested in the conical afterbody.
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Discussion of Gas Mode]

Air, for the present flight range, is mor¢ validly described as a
mixture of oxygen and nitrogen than as a single¢ diatomic gas. It is felt
however, that since the transport properties are quite alike, any impor-
tant difference, as regards catalytic heat trarsfer, would be in the
reaction rates and heats of reaction.

The conservation of species equation when written independently for
oxygen and nitrogen would be identical and wher. combined, would give
equation (35). Now, if k, were the same for both oxygen and nitrogen,
the combined catalytic boundary condition woulc be the same as that for
a single diatomic gas, equation (48). The assimption of equal values of
ky, seems reasonable in view of the limited kncwledge of heterogeneous
reaction rates (ref. 6), and is made here.

With these limitations, equal transport properties and equal values
of ky, the combined atom wall concentration, nay be calculated using the
rresent method.

If the solution had been carried out indejendently for oxygen and
nitrogen, with the above assumptions, the reduced concentration profile
would be the same for both since the equations are identical with identi-
cal boundary conditions. The heat of recombinetion at the wall AhC may
therefore, in the present analysis, be obtainec as a weighted average
based on the atom concentrations at the boundary-layer edge.

The Effect of Catalytic Activity con Hyper:sonic Heat Transfer

For a given hypersonic blunt body, the catalytic heat transfer is
largely controlled by the reaction parameter (i as can be seen from the
general equation (52). Approximate values of G for two typical surface
materials are shown in figure 6 for the range of flight conditions of
interest. The calculations are for the blunt lody shown in figure 1 with
a nose radius of 1 foot. The values of k, are taken from reference 6.

The atom diffusion rate into the wall is ¢pproximately proportional
to the driving potential, ¢; ¢ - ¢y y. Therefore, for my = O, da,w is
maximum and the total heat transfer would be atout the same as that for
an equilibrium boundary layer. The proportion of dissociation energy
transferred to the wall will decrease with (1-ny,). Now let us consider
a metallic oxide surface, which is quite highly catalytic. It is seen
from figures 4 and 6 that at lower altitudes (..ess than 150,000 ft) the
total heat transfer, gy, will be about as large as equilibrium heat trans-
fer. At the altitude of 250,000 feet, however. the catalytic heat trans-
fer will be reduced by about 50 percent. Since, at high speeds, as much

TN e
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as (5 percent of the total energy could be associated with dissociation,
the total heat transfer would be reduced to about 65 percent of equilib-
rium heat transfer, even for this highly catalytic surface. Any surface
material with a lower catalytic efficiency, such as pyrex, would, of
course, reduce the heat transfer to a much lower value,

CONCLUDING REMARKS

The catalytic heat transfer to the surfaces of two-dimensional ang
axisymmetric bodies with finite catalytic activities was analyzed.

An integral method was used to obtain catalytic heat-transfer pre-
dictions to (1) a flat plate in frozen compressible flow with and with-
out transpiration and (2) an axisymmetric conical body with a spherical
nose in frozen hypersonic compressible flow without transpiration.

The solution for a flat plate was derived in closed form.

It was shown that for a body whose pressure and equilibrium heat
transfer distribution curves are similar, the catalytic heat transfer
to the body can be calculated quite accurately by the use of a simple
local similarity concept. For the axisymmetric conical body with spher-
ical nose, the pressure and the equilibrium heat-transfer distribution
patterns were found to be quite similar. A comparison of the catalytic
heat-transfer sclution based cn the simple local similarity concept with
that obtained by the numerical solutions showed that the maximum error
was in the order of 5 percent for this body.

It was shown that at high flight altitudes, the dissociation energy
would not be recovered completely even with highly catalytic surfaces,
such as a metallic oxide., The total heat transfer, therefore, may be
considerably less than the equilibrium value for most engineering
materials.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Sept. 22, 1960
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(b) Axisymmetric cone with spherical nose

Figure 1l.- Physical models considered.
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e Exact solution
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Eqg.(54) of Ref.|
Eq.(4.23) of Ref.5
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Figure 2.- Incompressible solutions for r = 0.
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Numerical solution of equation (59)
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Figure 3.- Correlation of equation (67) with numerical solutions.
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Numerical solition of equation (59)
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Figure 3.- Continued.
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Numerical solution of equation (59)
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Figure 3.- Concluded.
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Numerical solution
— —— Local similarity solution
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Figure 5.- Catalytic heat transfer around the axisymmetric cone with
spherical nose.
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Reaction parameter, G
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Figure 6.- Variation of reaction parameter with flight condition.
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